

Fig. 1. Variation of the local values of normalized R indices as a function of y_t for different fixed values of σ_1^2 . For the definition of $R_1(y)$, $R_1(z)$, etc., see column 6 of Table 1.

P/N. (iii) Divide the range $0 \le s \le S_{\max}$ into a number of narrow subintervals. Determine from the data the number (n_s) of observed reflections in each of these sub-intervals. (iv) From the mean value of $\sin \theta/\lambda$ corresponding to each sub-interval determine the values of f. (v) Calculate σ_A (by taking $\langle |\Delta \mathbf{r}| \rangle = 0.2$ Å) corresponding to each of these sub-intervals. (vi) Make use of the results in Tables 2–4 and determine the values of $[R]_t$ for these sub-intervals by bilinear interpolation. (vii) Make use of the results thus obtained in the appropriate expressions for $[\bar{R}]_t$ and compute the overall values $[\bar{R}]_t$. The values thus obtained represent the theoretical overall values of the normalized R indices corresponding to a model for which $\langle |\Delta \mathbf{r}| \rangle = 0.2$ Å and for data in which $y_N \ge y_t$ and $0 \le s \le S_{\max}$.

References

- PARTHASARATHI, V. & PARTHASARATHY, S. (1977). Pramana, 9, 61–69.
- PARTHASARATHY, S. (1975). J. Indian Inst. Sci. 57, 127–159.
- PARTHASARATHY, S. & PARTHASARATHI, V. (1975). Acta Cryst. A31, 178–185.
- PONNUSWAMY, M. N. & PARTHASARATHY, S. (1977). Acta Cryst. A33, 838–844.

SRINIVASAN, R. & PARTHASARATHY, S. (1976). Some Statistical Applications in X-ray Crystallography. Oxford: Pergamon Press.

STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination, p. 182. New York: Macmillan.

WILSON, A. J. C. (1949). Acta Cryst. 2, 318–320.

Acta Cryst. (1981). A37, 480-485

Theoretical Evaluation of the Overall Values of Discrepancy Indices for Truncated Data. II. Normalized R indices for a Non-centrosymmetric Crystal with Similar Atoms

By D. Velmurugan and S. Parthasarathy

Department of Physics (Crystallography and Biophysics),* University of Madras, Guindy Campus, Madras-600025, India

(Received 2 June 1980; accepted 13 January 1981)

Abstract

Theoretical expressions and numerical tables for the local values of six types of normalized R indices are obtained for an imperfectly related incomplete model of

* Contribution No. 546.

0567-7394/81/040480-06\$01.00

a non-centrosymmetric crystal with truncated data. Under similar conditions, the curve of the local value of an R index versus the truncation limit y_t is relatively more flat for the non-centrosymmetric case than for the centrosymmetric case particularly in the region where y_t is small.

.00 © 1981 International Union of Crystallography

1. Introduction

In part I (Parthasarathy & Velmurugan, 1981), we derived the theoretical expressions necessary for calculating the overall values of various normalized R indices for a C crystal with truncated data. In this paper we shall derive the corresponding results applicable to an NC crystal. The notation used here is the same as in part I. Since the method of derivation closely follows that used in part I, we shall give only the essential steps.

2. Derivation of the theoretical expressions for the normalized R indices

2.1. Derivation of the joint p.d.f. of y_N and y_P^c for the truncated data

The joint p.d.f. of y_N and y_P^c for the NC case is known to be (SP, 1976)

$$P(y_N, y_P^c) = \frac{4y_N y_P^c}{\sigma_B^2} \exp\left[-\frac{(y_N^2 + (y_P^c)^2)}{\sigma_B^2}\right]$$
$$\times I_0\left(\frac{2\sigma_A y_N y_P^c}{\sigma_B^2}\right), \ 0 \le y_N < \infty, \ 0 \le y_P^c < \infty,$$
(1)

The joint p.d.f. of y_N and y_P^c applicable to the truncated data will therefore be given by [see (13) and (14) of part I]

$$P_{t}(y_{N}, y_{P}^{c}) = \frac{4y_{N}y_{P}^{c}}{\sigma_{B}^{2}\beta_{NC}} \exp\left[-\frac{[y_{N}^{2} + (y_{P}^{c})^{2}]}{\sigma_{B}^{2}}\right] \times I_{0}\left(\frac{2\sigma_{A}y_{N}y_{P}^{c}}{\sigma_{B}^{2}}\right), \qquad (2)$$

where β_{NC} can be shown to be [see equation (A-5) of the Appendix*]

$$\beta_{NC} = \exp\left(-y_t^2\right). \tag{3}$$

2.2. Derivation of the theoretical expressions for the normalized R indices

Index $[R_1(y)]_r$. Equation (21) of part I is valid for this case as well except that β_c is now to be replaced by β_{NC} . Since the first term within the square brackets represents $R_1(y)$ (see §2.3 of part I), and since $\langle y_N \rangle = \sqrt{\pi}/2$ for the NC case (Wilson, 1949), we obtain

$$[R_{1}(y)]_{t} = \left[R_{1}(y) - \frac{2}{\sqrt{\pi}} \int_{0}^{y_{t}/(1+y_{t})} \int_{0}^{1} \left|\frac{u}{1-u} - \frac{v}{1-v}\right| \\ \times P\left(\frac{u}{1-u}, \frac{v}{1-v}\right) \frac{\mathrm{d}u\mathrm{d}v}{(1-u)^{2}(1-v)^{2}}\right] \\ \times [2\pi^{-1/2}\beta_{NC}y_{t} + \mathrm{erfc}(y_{t})]^{-1} \qquad (4)$$

where we have used (A-7) of part II and the substitution in (24) of part I. $R_1(y)$ is known to be (Srinivasan & Parthasarathy, 1976; hereafter SP, 1976)

$$R_{1}(y) = \frac{3\sigma_{B}^{3}}{2} \int_{0}^{1} \frac{{}_{2}F_{1}(-\frac{1}{4}, -\frac{3}{4}; 1; \sigma_{A}^{2}x^{2})xdx}{(1+x)^{1/2}(1-\sigma_{A}^{2}x^{2})^{2}}.$$
 (5)

Index $[R_1(z)]_r$. Equation (26) of part I is valid for this case as well. Using (A-11) and following the steps used for the C case, we obtain

Fig. 1. Variation of the local values of normalized R indices as a function of y_t for different fixed values of σ_1^2 . For the definition of $R_1(y)$, $R_1(z)$, etc., see column 6 of Table 1 of part I.

^{*} This appendix has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35849 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

$$[R_{1}(z)]_{t} = \left[R_{1}(z) - \int_{0}^{y/(1+y)} \int_{0}^{1} \left| \left(\frac{u}{1-u}\right)^{2} - \left(\frac{v}{1-v}\right)^{2} \right| \\ \times P\left(\frac{u}{1-u}, \frac{v}{1-v}\right) \frac{dudv}{(1-u)^{2} (1-v)^{2}} \right] \\ \times [\beta_{NC}(1+y_{1}^{2})]^{-1}, \qquad (6)$$

where $R_1(z)$ has been shown to be (SP, 1976)

$$R_1(z) = \sigma_{\mathbf{B}}.$$
 (7)

Index $[_{B}R_{1}(y)]_{t}$, Equation (30) of part I is valid for this case as well. Substituting for $\langle y_{N}^{2} \rangle_{t} \langle (y_{P}^{c})^{2} \rangle_{t}$ and $\langle y_{N}y_{P}^{c} \rangle_{t}$ from (A-11), (A-14) and (A-16) respectively in equation (30) of part I and simplifying the result, we obtain

$$\begin{split} [_{B}R_{1}(y)]_{t} = & \left\{ {}_{B}R_{1}(y) + 2(\beta_{NC} - 1) + \beta_{NC}y_{t}^{2}\left(1 + \sigma_{A}^{2}\right) \right. \\ & \left. + \frac{\sqrt{\pi}}{\sigma_{B}} \int_{0}^{y_{t}^{2}} u^{1/2} \exp\left[-u(1 + \sigma_{B}^{2})/2\sigma_{B}^{2}\right] \right. \\ & \left. \times \left[\left(\sigma_{B}^{2} + \sigma_{A}^{2}u\right)I_{0}\!\left(\!\frac{\sigma_{A}^{2}u}{2\sigma_{B}^{2}}\!\right) \! + \sigma_{A}^{2}uI_{1}\!\left(\!\frac{\sigma_{A}^{2}u}{2\sigma_{B}^{2}}\!\right) \right] \mathrm{d}u \right\} \\ & \left. \times \left[\beta_{NC}(1 + y_{t}^{2})\right]^{-1}, \end{split}$$
(8)

where $_{B}R_{1}(y)$ is known to be (SP, 1976)

Table 1.	Values oj	$f[R_1(y)]_t$ and $ $	$[R_1(z)]_t$ as	functions of σ	A and y_t	for th <mark>e</mark> non-ce	entrosymmetric case
----------	-----------	-----------------------	-----------------	-----------------------	---------------	------------------------------	---------------------

$${}_{B}R_{1}(y) = 2 - 2\left[E(\sigma_{A}) - \frac{\sigma_{B}^{2}}{2}K(\sigma_{A})\right].$$
 (9)

Index $[{}_{B}R_{1}(z)]_{t}$. Equation (33) of part I is valid for this case as well. Substituting for $\langle y_{N}^{4} \rangle_{t}$, $\langle y_{P}^{c} \rangle^{4} \rangle_{t}$ and $\langle y_{N}^{2}(y_{P}^{c})^{2} \rangle_{t}$ from (A-13), (A-15) and (A-17) respectively and simplifying the result by using (16) of part I, we obtain

$$[_{B}R_{1}(z)]_{t} = \frac{(_{B}R_{1}(z) + \sigma_{B}^{2} + 2\sigma_{A}^{2}\sigma_{B}^{2}y_{t}^{2} + \sigma_{B}^{4}y_{t}^{4})}{(y_{t}^{4} + 2y_{t}^{2} + 2)}, \quad (10)$$

where $_{R}R_{1}(z)$ is known to be (SP, 1976)

$$_{B}R_{1}(z) = \sigma_{B}^{2}. \tag{11}$$

Index $[R_1^f(y)]_t$. Equation (37) of part I is valid for this case as well, provided β_c is replaced by β_{NC} and

 $P(y_N, y_P^c)$ is taken to be the function in (1) of this part. Following the method used for this index in part I, the final expression can be shown to be

r

$$[R_{1}^{f}(y)]_{t} = \frac{1}{\beta_{NC}} \left[R_{1}^{f}(y) - 2 \int_{0}^{y_{t}/(1+y_{t})} \int_{0}^{1} \left| \left[\left(\frac{u}{1-u} \right) - \left(\frac{v}{1-v} \right) \right] \right| \\ \times \left[\left(\frac{u}{1-u} \right) + \left(\frac{u}{1-v} \right) \right]^{-1} \right| \\ \times P \left(\frac{u}{1-u}, \frac{v}{1-v} \right) \\ \times \frac{dudv}{(1-u)^{2}(1-v)^{2}} \right], \qquad (12)$$

Table 2. Values of $[{}_{B}R_{1}(y)]_{t}$ and $[{}_{B}R_{1}(z)]_{t}$ as functions of σ_{A} and y_{t} for the non-centrosymmetric case $[{}_{B}R_{1}(y)]_{t}$

					(B-, 1/2))					
$\downarrow^{\sigma_A} y_i \rightarrow$	0.00	0.15	0.30	0.45	0.60	<i>y_t</i> → 0.00	0.15	0.30	0.45	0.60
0.000	42•920 42•852	41.074 41.008	37.096 37.037	32.931 32.881	29.740	100.000 99.840	97•800 97•647	91.774 91.639	83.442 83.333	74.733
0.120	42.303	40.485	36.574	32.482	29.345	98.560	96.423	90.564	82.452	73.951
0.160	41.826	40.030 39.449	36.171 35.657	32.137	29.041 28.654	97•440 96•000	95•351 93•972	89.620	81.677	73.337
0•240 0•280	40.475 39.606	38.743 37.916	35.033 34.301	31.161 30.534	28•184 27•635	94•240 92•160	92•285 90•290	86.914 85.146	79.444	71.553 70.371
0•320 0•360	38.612 37.493	36•969 35•904	33•465 32•525	29.819 29.014	27.007 26.302	89•760 87•040	87 •985 85•371	83.098 80.766	76•266 74•307	68.985 67.305
0•400 0•420	36•251 35•583	34•722 34•088	31.482 30.922	28.122 27.643	25.520 25.099	84.000 82.360	82•444 80•864	78 .14 6 76 . 726	72.092 70.885	65.561 64.560
0.440	34.886	33.424	30.337	27.142	24.659	80 • 6 4 0 7 8 • 8 4 0	79•206 77•468	75 • 233 73 • 665	69.611 68.269	63.500 62.376
0.480	33.397	32.008	29.087	26.071	23.717	76 960	75.653 73.758	72.022	66 856 65 372	61 • 108 59 • 935
0.520	31.783	30.472	27.731	24.907	22.691	72.960	71.784	68.508	63.815	58.613
0.560	30.039	28.813	26.264	23.645	21.574	68 640	67.598	64 685	60.478	55.757
0.600	28.161	27.026	24.682	22.278	20.359	64.900	63.093	60.545	56.832	52.603
0.620	27 170	26.082	23.845	21.522	12.711	61.560	60.720	24.355	24 889	50.909
0.640	26.143	25.104	22.276	20.797	19.036	59.040	58.267	56.083	52.863	49.133
0.000	25.079	24.091	22.075	20.012	18.331	56.440	55.733	53.729	50.753	47.275
0.680	23.977	23.041	21.139	19.194	17.394	53.760	53.118	51.290	48 - 558	45.327
0.690	22.836	21.953	20.169	18.342	16.824	51.000	50.422	48.768	46.274	43.292
0.710	22.251	21.394 20.826	19.669 19.161	17.455	16.427	49.590 48.160	47.644	46.160	43.901	42.240
0•730 0•740	21.049 20.432	20•247 19•659	18.643 18.115	16.998	15.604	46•710 42•240	46•224 44•184	44•823 43•465	41.436	40.065 38.942
0•750 0•760	19.805 19.166	19.059 18.450	17.577 17.029	16.055 15.568	14.744 14.298	43•750 42•240	43.323 41.841	42.084 40.682	40.168 38.877	37.795
0.770 0.780	18.517 17.857	17.829 17.198	16.471 15.902	15.071 14.563	13.843 13.377	40.710 39.160	40.339 38.817	39.257 37.810	37•561 36•221	35•425 34•202
0.790	17.185	16.556	15.322	14.045 13.516	12.900 12.413	37•590 36•000	37.273	36.341 34.849	34.857 33.465	32.953 31.678
0.810	15.806	15.237	14.129	12.975	11.913	34 390 32 760	34.124 32.518	33 334 31 796	32.054 30.614	30.376
0.830	14.379	13.871	12.890	11.857	10.879	31.110	30.892	30.235	29 148	27.690
0.850	12.903	12.456	11.602	10.682	2.796	27.750	27.576	27.042	26 139	24 892
0.870	11.375	10.991	10.263	9.469	8.662	24.310	24.175	23.756	23.023	21.950
0.890	9.795	9.474	8.870	8•192	7.473	20.790	20.691	20.373	19.795	18.949
0.900	8.984	8.299	7.787	7.194	6.545	18.098	18.022	17.773	17.307	16.596
0.910 0.915	8•158 7•740	7.901	7.046	6.510	5.909	16 • 278	16-216	16.009	15.610	14.988
0.920	7•319 6•893	7•092 6•683	6•669 6•289	6.161 5.808	5.259 5.259	15+360	14.389	14.220	13.885	13.342
0.930 0.935	6.464	6.269 5.852	5.904	5.451 5.090	4.929 4.595	13.510 12.578	13.467 12.540	13.317	13.012	11.678
0.940	5.594	5.430	5.122	4.724	4.258	11.640 10.698	11.608 10.670	11.490 10.568	11.243	10.830 9.974
0.950	4.708	4.575	4.321	3.979	3.574	9.750 8.798	9•727 8•779	9•639 8•704	9.445 8.535	9.110 8.237
0.960	3.805	3.702	3.500	3.217	2.878	7.840 6.878	7.825 6.866	7.763	7.617	7•356 6•467
0.970	2.884	2.810	2.659	2.436	2.171	5 910	5.901 4.931	5.861 4.900	5.759 4.818	5.569
0.980	1.945	1.899	1.795	1.638	1.455	3.960	3.956	3.933	3.870 2.914	3.747 2.824
0.985	0.985	0.963	0.908	0.825	0.730	1.990	1. 289	1.980	1 951	1.891
0.995	8.000	8.000	0.000	0.000	0.000	8.000	ŏ . óóó	0.000	ŏ.óòó	0.000

where $R_1^f(y)$ is known to be (Parthasarathi & Parthasarathy, 1977; hereafter PP, 1977)

$$R_1^f(y) = 2 - \frac{2}{\sigma_B} \ln (1 + \sigma_B).$$
(13)

Index $[R_1^{f}(z)]_r$. Equation (40) of part I is valid for this case as well. In this case the final expression can be shown to be

•

$$[R_{1}^{f}(z)]_{t} = \frac{1}{\beta_{NC}} \left[R_{1}^{f}(z) - 2 \int_{0}^{y/(1+y_{t})} \int_{0}^{1} \left[\left(\frac{u}{1-u} \right)^{2} - \left(\frac{v}{1-v} \right)^{2} \right] \right]$$

$$\times \left[\left(\frac{u}{1-u} \right)^2 + \left(\frac{v}{1-v} \right)^2 \right]^{-1} \right]$$
$$\times P\left(\frac{u}{1-u}, \frac{v}{1-v} \right) \frac{\mathrm{d} u \mathrm{d} v}{(1-u)^2 (1-v)^2} \right], \quad (14)$$

where $R_1^f(z)$ is known to be (PP, 1977)

$$R_1^f(z) = 2\sigma_B / (1 + \sigma_B).$$
 (15)

3. Discussion of the theoretical results

The theoretical expression for the six different normalized R indices valid for truncated data have been derived in (4), (6), (8), (10), (12) and (14). As in the C case, these indices depend on the parameters y_t and σ_A .

Table 3.	Values of $[R_1^f(y)_t]$ and	$[R_1^f(z)]_t$ as functions of a	σ_A and y_1 for the	non-centrosymmetric case
----------	------------------------------	----------------------------------	------------------------------	--------------------------

		$\left[R_{1}^{f}(y)\right]_{t}$					$\left[R_{1}^{t}(z)\right]_{t}$				
σ, •	<i>y_i</i> — 0.00	0.15	0.30	0.45	0.60	$y_t \rightarrow 0.00$	0.15	0•30	0.45	0.60	
00000000000000000000000000000000000000	107115031877324700643295908226459381188002261415230026439902105521639506690 374497830018776628494837076284950505049360358264593848742268528999886757757739642849487999887765484948772268555555555555555555555555555555555	76377171078955938089221955946968310984744499994470927124460233082693022 8560804213690836524395036774053204945327147923334879887887653443473882643847 999998887766554433211000988882776645371479233346454878958849945878499864133847 999998888776655443321100098888277664537147923334645487895884994587848998458 9999988887766555443321100098882776645347314792333333333333333333333333333333333333	3 3 3 2 9 2 9 5 J 7 0 4 3 87 8 1 2 1 5 2 5 8 0 0 8 4 8 7 2 2 6 4 4 4 6 6 3 6 2 1 9 4 3 2 7 3 5 5 5 5 4 4 9 6 2 4 0 3 0 4 7 1 8 7 3 9 3 5 7 7 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 47270035283646206113454392391881041833559278619159051366429911118000 634409300396256403292170343318927381041833559278619915905136642992111800 998742250485156403292170343837883788575650002560822987763548719920557982020 9987422504851764542901173949317394027588284 998742250485148240 998742250485148240 99874242003396225649444444444444444444444440098887766544430109876485448844 998742420420202020000000000000000000000000	67 0-101489010377 41321120170477080371106800063414404285651367502154500450851400 74610828845651257451450764757826025525 347451082884526416415697067826045525 347451082884526416415697067826045514000414004585651400447604550 34745104284084565145074547825045545444545545444444045556545440045550 347451042986685555555555555555555555555555555555	1999999999999999999999999999999999999	108447947914124522273755732433829503514328603966560923804099571460433660 73004360356436501775835565725241231703467541231209463545560923804099571450433660 00974056355464345522727375573245727125231703467541233624554555242108753264244475460 88777777665554395643155758353657271252431709463545740037554455609238040995714504433660 887777776655543959999998558858555545421233170946354574109856532042454545524240875324644475460 88877777776655433204041245227	4 4 27 82527 29 4 59 61 4 07 055 8 4 221 0 82 4 031 8 21 227 62175 61 09 31 887 0137 537 94 1989 601 0 8 421 825 825 829 60 54 4 27 8 20 50 50 50 50 50 50 50 50 50 50 50 50 50	3345936999726452064330995652630094222053178840099652479271965301880004977514610 8194533693864284575531735545536471356195555555555555555555555555555555555	8990132033182014807418247475747777777777777777777777777777777	

The variation of these indices as a function of y_t for the situation $\langle |\Delta \mathbf{r}| \rangle = 0.2$ Å and $\sin \theta / \lambda = 0.4$ Å⁻¹ is shown in Fig. 1(a)–(f). A study of these figures shows that, in the NC case, as y_t increases, $[R]_t$ decreases. This decrease is much less when y_t is small (say $y_t < 0.15$) and becomes more pronounced for larger y_t . This behaviour of $[R]_t$ in the NC case may be contrasted with its behaviour in the C case (see Fig. 1 of part I). The evaluation of the overall values of the R indices for the NC case. The values of $[R]_t$ (in percent) as

functions of σ_A and y_t required for the evaluation of $[R]_t$ are given in Tables 1–3 for the various R indices.

References

- PARTHASARATHI, V. & PARTHASARATHY, S. (1977). Pramana, 9, 61–69.
- PARTHASARATHY, S. & VELMURUGEN, D. (1981). Acta Cryst. A 37, 472–480.

SRINIVASAN, R. & PARTHASARATHY, S. (1976). Statistical Applications in X-ray Crystallography. Oxford: Pergamon Press.

WILSON, A. J. C. (1949). Acta Cryst. 2, 318-321.

Acta Cryst. (1981). A37, 485–488

Absorption Coefficients of Electrons in Crystals

By Y. Kamiya, Y. Nakai and E. Masuda*

Department of Physics, Nagoya University, Nagoya, Japan 464

(Received 13 October 1980; accepted 13 January 1981)

Abstract

Absorption coefficients of Si, Ge and InSb are obtained from the analysis of extinction contours in the acceleration voltages ranging from 100 to 750 kV. The cross sections of thermal diffuse scattering, plasmon excitation and electronic excitation are obtained separately. An agreement between theory and experiment is obtained for thermal diffuse scattering and plasmon scattering. The theoretical estimation based on the electron gas statistical model is favourable for the electronic excitation.

1. Introduction

Since the mean and anomalous absorption coefficients are important parameters for electron diffraction and microscopy, many investigations have been carried out experimentally and theoretically. Early attempts to measure absorption coefficients were made on ordinary electron micrographs (Kohra & Watanabe, 1959; Hashimoto, 1964). In these cases some of the inelastic scattering was included in the pattern. It was pointed out, however, that the elastic intensity of the extinction contour of the electron microscopic image did not agree with the theoretical one (Ichimiya, 1969; Takagi & Ishida, 1970). The discrepancy between theory and experiment was shown to be mainly due to technical problems (Kamiya & Gotō, 1980). The aim of the present paper is to extend the experiment to the case of higher accelerating voltages by using electron micrographs. The diffraction pattern was also used for the measurement of absorption coefficients (Molière & Lehmpfuhl, 1961) and later Meyer-Ehmsen (1969) measured them from transmitted and diffracted intensities of elastic scattering at an accelerating voltage of \sim 50–70 kV. The present results agree quite well with that given by Meyer-Ehmsen. The result also shows that the cross sections due to plasmon excitation and thermal diffuse scattering agree fairly well with theories by Ashley & Ritchie (1970) and Hall & Hirsch (1965), and that the cross section due to electronic excitation agrees with the theory of Ritchie & Howie (1977).

2. Experiments

Experiments were made in the cases of Si, Ge and InSb at several accelerating voltages between 100 and 750 kV and at three different temperatures. The experimental procedure is the same as described previously (Kamiya & Gotō, 1980). The intensities of extinction contours formed by elastic scattering were obtained with a magnetic velocity analyzer (Ichinokawa, 1968; Kamiya, Shimizu & Suzuki, 1974). Most experiments were done at the Bragg position of the 220 reflection. The intensity of the extinction contour is analyzed by a method based on the two-beam approximation (Uyeda

© 1981 International Union of Crystallography

^{*} Present address: Transistor Works, Tokyo Shibaura Electric Co. Ltd, Saiwai-ku, Kawasaki, 210, Japan.